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A prerelativistie Maehian theory of gravitation in a relative configuration 
space of the type developed in Barbour and Bertotti (1977) is proposed, 
which fulfils the principle of equivalence in a natural way. This is accom- 
plished by assuming that the basic interactions with which the dynamical 
Lagrangian is constructed are three-body and velocity dependent. Gravity 
arises between two bodies when other masses move--in particular when the 
universe expands (or contracts). The properties and physical consequences 
of this theory are very similar to the previous one; in particular the two-body 
problem has a small post-Newtonian correction leading to an advance of 
the periastron, and to the determination of the velocity of expansion of the 
universe. We find that the motion of test particles introduces naturally into 
the theory the restricted covariance group, in which any space transforma- 
tion that preserves simultaneity is allowed. This permits us to define an 
inertial frame of reference, and to obtain the analog of the equation of 
geodesic deviation. Finally, we discuss the effect of the anisotropy of the 
universe on the mass. 

1. I N T R O D U C T I O N  

J. B. Ba rbou r  (1974a, b ;  1975) and  Barbour  with Bertot t i  (1977) (referred 
to  as BB) have shown tha t  Leibniz ' s  (Leibniz  and  Clark ,  1956), Berkeley 's  
(1710, 1721) - -and  especial ly M a c h ' s  (1960)- - ideas  a b o u t  the theory  o f  
m o t i o n  (if  fo l lowed consis tent ly  and  fai thfully)  suggest an a p p r o a c h  radica l ly  
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different from both Newtonian and relativistic dynamics, which has never 
been fully explored. In this approach the laws of motion acquire their usual 
form only in a stable cosmological environment, and with a very large dis- 
tribution of masses at great distances; if only a few bodies were present, the 
basic physical laws would appear very different (and have been called 
"protophysics"). In the previous paper BB have. shown the great power and 
richness of two precise mathematical principles, which we believe are the 
most faithful realization so far of Mach's ideas about motion in a prerelativis- 
tic framework: the relative configuration space (RCS), and the arbitrariness 
of the time variable. Essentially, the whole classical (i.e., nonrelativistic) 
gravitation physics was recovered, including the value of the gravitational 
constant and the advance of the periastron in the Kepler problem (which was 
very well known in the last century). This was achieved using very simple 
techniques and a Euclidean three-dimensional space. It seems, however, that 
the strong principle of equivalence, Lorentz invariance, and retardation lie at 
a much deeper level--if indeed they are encompassed at all in this framework 
(of course, if this is not the case, our work will have no practical application 
and should be regarded only as a stimulating exploration of historical 
possibilities). 

In this paper, we present a much better formulation of the theory de- 
veloped in BB which overcomes a serious objection, namely, the weak 
equivalence principle is imposed there a priori through an artificially con- 
structed Lagrangian. In the present paper it is achieved in a very simple way, 
while still retaining all the better features of BB. This is accomplished by 
assuming that the elementary interactions with which the dynamical La- 
grangian is constructed, are velocity-dependent, three-body interactions: Then 
two bodies attract each other via the rest of the universe. Their relative 
velocity with respect to the universe, which is essentially its speed of expan- 
sion, determines the strength of gravity. The formalism is very similar to BB, 
and is developed in Sections 3 and 4; in the Conclusion we discuss in detail 
the weak principle of equivalence in this theory. 

2. SIMPLICITY IS NOT OBVIOUS 

The reason why BB failed to incorporate the equivalence principle was 
the use of elementary two-body interactions in the construction of the 
Lagrangian. This was, of course, suggested by ordinary physics, but on 
further thought it is not necessarily the simplest choice from a Machian point 
of view. We expect, in fact, that a body A and a body B interact only in the 
presence of other bodies. This is well borne out by our important conclusion 
(see BB, Section 4) that a problem with only two bodies has no dynamical 
content: Their successive configurations are described by a single variable, 
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the distance, which is an arbitrary function of the arbitrary time. Our old 
action, which yielded a well-defined expression (but one devoid of dynamical 
content) even for the two-body problem, was therefore redundant. 

We want to construct a Machian theory based upon elementary three- 
body interactions. In this view, a two-body interaction can be described 
syrnbolicaUy as follows: 

interaction between A and B = ~ (interactions between A, B, C) 
C 

where the summation is taken over all the other bodies in the universe. We 
also choose to realize the time invariance by the generalized "geodesic 
principle": The Lagrangian has the form 

{quadratic form in the time derivatives of the observables} 1/2 (2.1) 

Taking, as before, the Euclidean distances r~j between the points i andj  as the 
dynamical variables, we consider three-body terms proportional to 

weighted with the product of their (positive) masses, m~mjmk. We must also 
add a factor that makes the interaction weaker when the three bodies are far 
apart; the simplest choice is the Euclidean area S~r of the triangle they form. 
This leads to the Lagrangian 

"~r = [ <~<~ k m~mjm~(f~+f~k+f~)] 1 / 2 S ~ j k  (2.2) 

The dot indicates a derivative with respect to the arbitrary time parameter, 
No other factor is needed to describe gravitation. 

Of course, other choices of a Lagrangian are possible--such as f~jfjk, or a 
four-body interaction. The adoption of a Euclidean infinite background 
space is a weak point from a Machian point of view, and leads to an awkward 
cosmology, as explained in BB (Section 5). The latter difficulty could be 
remedied by adopting as a basic geometry a three-dimensional hypersphere 
embedded in a four-dimensional Euclidean space; one obtains in this way 
very similar results. At the present rudimentary and nonrelativistic level, 
however, it seems pointless to consider refinements and completeness. A 
simple spherical shell of radius R and mass M is thus adopted as the cosmology 
(as in BB), and the motion computed in the cosmic limit: m/M--~ O, r/R --~ 0; 
where r is the distance from the center of the shell and m is a typical local mass. 

It is noteworthy that, as expected, the problem of one and two bodies has 
no dynamical content; the problem of three bodies is simpler than in BB 
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because it does not depend on their masses. Denoting by S the area of  their 
triangle, they move according to the Lagrangian 

La = ( f~22 + f~3 + S r~l) tl2 

the trajectory is a ray in the space (r12, r2a, rax), with index of  refraction 
n = 1IS tl2. It can be shown that a boundary S = 0 is approached normally; 
the ray is reflected back into the allowed region S > 0 with a cusped trajec- 
tory. Note that the mass of  a body has a physical significance only if there are 
at least four bodies in the universe. 

3. LOCAL PHYSICS 

Before going into the actual calculations, it is helpful to summarize their 
physical meaning. The triple summation appearing in (2.2) splits into four 
groups of  terms, according as a point belongs to the cosmological shell, or 
to the local group at or near its center. In estimating the order of magnitude 
we have assumed that all the velocities are of  the same order as the velocity of  
the expansion of the universe,/~; thus, the only smallness parameter is m / M ,  

while "Mach's  ratio" 

X = m R / r M  (3.1) 

is considered finite. In the actual applications, however, only X << 1 will be 
considered. Referring now to Table I, in the cosmic limit m / M  --> 0 the value 
of  the cosmological term (i) is dynamically irrelevant, and the local Lagrangian 
is just  proportional to R/R(( i i )+  ( i i i )+ (iv)), thereby losing the time 
invariance. 

In the actual calculations of  the Lagrangian, full use is made of the 
uniformity of  mass distribution on the shell. Possible anisotropy effects can 
be described by adding more local masses. In accordance with the cosmic 
limit, the quantity f~j for a local point r~ coupled with a shell point R~ is 
taken to be R - ~. t~. 

The resulting Lagrangian for a system of point masses near the center of 
the cosmological shell, and using an arbitrary time parameter, is 

= . " # , 1  § 

1 ~j m~m~ 
+ -ff-  r ,--7 

M ~ r~j + zMl< i<j tj 

R X" mtmjm~ t ~ 2 •  i'~t) 
/__, ~ v~jT ~k + 

+ 21rM2R i<j<~ ~jk 
(3.2) 
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TABLE I. Grouping interaction terms: local dynamics from protophysics. 

Group Order of Magnitude Significance 

(i) i ~ k  

( i i )  l i ~ k  

(iii) 

MaR2 
R---- T- ~ 1 Cosmological term 

.!V~mf~ 2 m 

R 2 M 

M mZ_~ 2 m mR 
r R M M r  

Kinetic energy of the point i 

Interaction energy between 
points i and j; perihelion 
perturbing terms 

[ i.,~ / m3R 2 m (mR~ z Three-body interaction of (iv) 
r 2 M \ r M/  a new kind 

As yet, R is an arbitrary function of time. To recover a Lagrangian 
satisfying the first principle of dynamics (Newton's First Law), choose 

= 1/3R (3.3) 

which thus defines the local time t as a function of the radius of  the universe. 
Note that just as in the steady-state theory (Bondi, 1952), the homogeneous 
and isotropic cosmology is unique; here, however, q = -_RR/_~ 2 = 1. This is 
the main observational parameter distinguishing RCS theories of  this kind; 
BB produced q = 3/2 [see BB (6.11)]. When this local time is adopted, ~z  
reads 

1 ~  3R~2~<jm~mj 3R ~ , m ~ m s .  2 
= ~ m,[e,[ 2 + ~ r,s + ~ "  ~ r,j 2M ~ r/j 

+ 8--M,<j r,---7 

3R 2 ( ~  + e~k + i~,) (3.4) 
+ 2rrM 2 ~.  rn~mjmk S~y~ 

i < j < k  



314 Bertotti and Easthope 

The ordinary two-body gravitational interaction (the second term), arises 
quite naturally from the triangle defined by a point on the shell, and two near 
the center; its area will be proportional to r m The correct value of the 
gravitational constant 

G = 3RR2 /M (3.5) 

arises because the fundamental interaction is velocity dependent and domi- 
nated by the expansion of the universe. In BB and in Barbour (1975) the 
"internal motion" mechanism was considered in order to generate gravity 
(Section 10); ours could be called an "external motion" mechanism and is 
more satisfactory because it relies on a well-defined physical velocity. In 
either case, it is interesting to note that a direct Machian approach to the 
problem of inertia using only relative distances produces gravity-type forces 
rather naturally as a by-product of the solution of the problem of inertia. 

4. CELESTIAL MECHANICS 

In the slow-motion approximation ([t[2//~2 = O(x) << 1), the four types 
of terms in (3.4) have the following magnitudes: 

mf 2 

Gm2 "2 R m  
r - m R  "-Mr = mR2x = O(mi'2) 

Gm 2 ?z 
r ~2 = O(mi'2X) 

m2R 4 
M2r 2 = O(m~2x 2) 

The three-body interaction is of "post-post-Newtonian" order, and this has 
no observable effect. It can be shown that the formal divergence appearing in 
this term when the three bodies i, j, and k are aligned is removed when their 
finite size is taken into account. 

The two-body problem has the Lagrangian 

1 [  3R (m12 + m22)] 3R[~2m 
= + + 

s 2 l + 4 M r  m 

3Rm ( m12 + m22"~ i'2 (4.1) 
+ -~---~ 1 +  "4-m ~ ] r  

where m = m~ + ms, and a center-of-mass frame is taken. [This Lagrangian 
has an extra term, xr2~ 2, over and above that of BB (7.1).] It produces a 
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periastron advance with the same dependence on the orbital elements as 
general relativity: 

t 3(rn12 + m22)~ 2~r 3Rm 1 + (4.2) 
A~ = a (1 - -  e z) 2M 4m-~ j 

Using the Mercury perihelion shift, (4.2) gives 

RIM = 8.5 • 10 -2s m/kg (4.3) 

and the measurement of  the Kepler period, in conjunction with (4.3), gives 

= 1.6 • 10 s m/see (4.4) 

Consideration of the restricted three-body problem, consisting of  the 
above system plus the galaxy, produces a mass anisotropy; and a Lagrangian 
differing only slightly in the coefficients from BB (provided X is small). 

The nearest model we can construct to the case of light deflection is that 
of a very small mass moving at high velocity near a gravitating body. For a 
particle moving in from infinity, and with a velocity comparable to /~ ,  the 
deflection (for small X) is 

A0 ~ r162 (4.5) 

where a ~ I and Xo << 1 is the perihelion value of the Mach ratio. 

5. CONCLUSION 

Having constructed a Machian theory of gravity that fulfils in a natural 
way the equivalence principle, we are ready to discuss inertial frames of 
reference. 

A test particle moves according to a Lagrangian of the form 3 

~ = A(r, t) + B~(r, t)~ ~ + C~(r,  t ) ~  B (5.1) 

where A, B,, and C,~ are determined by the positions and velocities of all the 
other particles. This Lagrangian has been derived in the abstract Euclidean 
space, introduced at the beginning as a matter of convenience; but the test 
particle dynamics does not require it. Furthermore, any other labeling of the 
points of space and time that preserves simultaneity 

r ~ = r~(~ ~, f) (5.2a) 

t = t(l) (5.2b) 

8 Greek indices range from 1 to 3. Also, C~a is positive definite, since any Lagrangian of 
the form (2.1) reduces to [C,~B]  1~2 when all other bodies save the test particle are at 
rest; and this is certainly positive definite. 
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leaves ~ r  dt invariant in form, the new coefficients being given by 

- d t  ~ r  ~ ~ r  ~ ~ r  ~ df 
A = A ' ~  + B~ w + C~B et  e t  dt 

~r ~ ~r ~ ~r ~ di (5.3) 

8r ~ 8r B d# 
C,v = C,a ~e" 87 ~ dt 

We call (5.2) the restricted covariance group (Ehlers, 1973). The time variable 
can still be replaced by i(t), say, but if t depends on r" as well, the polynomial 
structure of (5.1) is lost; thus the group of restricted covariance transforma- 
tions (5.2) has a dynamical significance and can be distinguished operation- 
ally within the general covariant transformations of space-time. If  an observer 
is not aware of the Euclidean reference system of protophysics, he or she 
will not be able to distinguish between the different frames (5.2); any set of 
functions (A, B~, C~)- -a t  least for a small domain of space and time--could 
be attributed to appropriately chosen gravitating bodies. 

We now want to use the restricted covariance to find out about inertial 
frames in the neighborhood of a given test particle r0(t). Given a generic 
Lagrangian La(r, f, t), a neighboring body wih an infinitesimal physical 
displacement (at the same time) 8r(t) = r(t) - ro(t), moves according to the 
Lagrangian 

~ 2 ~  ~ . [ ~2~e ~ 8"~8 "~ 8.LP= ( ~ ) o S r ~ S r a + 2 ( ~ ) o S r  8 r~+ ~ ) o r  r (5.4) 

(see, e.g., Bliss, 1945); where ( )o denotes that the function is computed for 
ro(t), and is therefore a given function of time. In our case, we have 

8=Z' = C~a(t)8~Si "a + D~B(t)Sr~Si "a + E~a(t)Sr~Sr a (5.5) 

where 

D~B = 2(B~,a + 2C~o.B~o ~ 

E~B = A.=a + Bo,,B~o p + Co , , j ' o~  ~ 

A comma denotes a space derivative. There is an obvious physical interpreta- 
tion of the three terms in (5.5), corresponding, respectively, to inertia, Coriolis 
or "magnetic" forces, and tidal forces. 

The restricted covariant transformations, when restricted to space 
[equation (5.2a)], give 

8r ~ = pB~8?~ 
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where PB~(t) = (Ore/~gfB)o; upon differentiation we have 

One can easily find out the transformation laws for the quantities C.a, D~ a 
and E.a; all we need here is 

D~v = C~a(Pv~Pu, a + Pu~Pv a) + D~aP~P~ a 

We can always set/5.~ = 0 inine equations) using the nine functions Pa% 
The Coriolis-type terms in (5.5) then disappear, and it is appropriate to say 
that the corresponding flame is inertial The  relevant equations of  motion 

d - -a 
-~ [C~a(t)Sr ] = F,~a(t)8~a (5.6) 

are the analog of the equations of geodesic deviation. 
There are two reasons why this motion does not agree with ordinary 

mechanics: There is an anisotropic mass C~a, and this mass changes with 
time. If  the universe around us were exactly isotropic, C~a would be propor- 
tional to the unit matrix. Then, as we have done in Section 3, a new time 
variable i can be chosen in such a way that the coefficient of proportionality is 
equal to, say, 1/2. In the general case, one can still set 

C~B(f) = �89 + �89 A~ = 0 (5.7) 

We still have at our disposal a constant linear substitution in the coordinates 
3~ ~; with it, one can produce now A~B(0 ) = 0. In doing this, we have fixed the 
coordinate axes and introduced a spatial metric for every point of  space and 
for every instant of  time. For  every phenomenon occurring over a short time 
scale , ,  we have, finally, 

c~B(~) = �89 + �89 (5.8) 

The only coordinate freedoms left to us are orthogonal space transformations. 
Denoting by 8 the amount of  anisotropy around us, and by H the 

expansion rate of  the universe, we see that the correction term in (5.8) is of  
order HrS.  There is an upper limit to 8(~ 10 -s) set by the microwave back- 
ground radiation, and the galaxy produces a 8 of  order 10 -7. 

When the gravitational field, described by E,a, is negligible, we are left 
with a peculiar statement of the first principle of  inertia: Bodies do not move 
uniformly, but keep constant the momentum 

P~ = 8~ + tA~(0)8~ B 

The set of  all free trajectories is not invariant under the Galilei group 

8p ~ -+ 8~ ~ + v ~ 
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the violation is again of  order H~-8 in dimensionless units, and changes from 
place to place and from time to time, according to the value of  A~a(0). This is 
to be regarded as a violation of  the strong equivalence principle: Even the 
simplest dynamical law is not universal. 

As already remarked in BB, this preliminary theory cannot be compared 
quantitatively with experiments until a dynamical description of  the measur- 
ing instruments-- in particular rods and clocks--is provided for. This of  course 
entails reformulating electromagnetism and quantum mechanics in a Machian 
way, and it is a much harder task. This problem will be subject to severe 
constraints from the absence of any observed violation of  the equivalence 
principle. 
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